Seien $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$. Außerdem seien $\vec{A}, \vec{B} : \mathbb{R}^3 \to \mathbb{R}^3$ hinreichend oft stetig differenzierbare Vektorfelder, $\lambda, \mu \in \mathbb{R}$ sowie $f, g : \mathbb{R}^3 \to \mathbb{R}$ hinreichend oft stetig differenzierbare Funktionen.

- 1. **Aufgabe:** (Vektorprodukt bzw. Kreuzprodukt) Beweise die folgenden Identitäten:
 - (a) Das Vektorprodukt ist bilinear, d.h. für $\lambda, \mu \in \mathbb{R}$ gilt

$$\vec{a} \times \left(\lambda \vec{b} + \mu \vec{c}\right) = \lambda \vec{a} \times \vec{b} + \mu \vec{a} \times \vec{c} \quad \text{ und } \quad \left(\lambda \vec{a} + \mu \vec{b}\right) \times \vec{c} = \lambda \vec{a} \times \vec{c} + \mu \vec{b} \times \vec{c}.$$

- (b) Das Vektorprodukt ist antikommutativ, d.h. es ist $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$. Außerdem gilt $\vec{a} \times \vec{a} = 0$.
- (c) Die zyklische Summe von drei Kreuzprodukten verschwindet (Jacobi-Identität):

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0$$

(d) Beweise die BAC-CAB-Formel (Graßmann-Identität):

$$\vec{a} \times \left(\vec{b} \times \vec{c} \right) = \vec{b} \left\langle \vec{a}, \vec{c} \right\rangle - \vec{c} \left\langle \vec{a}, \vec{b} \right\rangle$$

- 2. Aufgabe: (Rotation)
 - (a) Beweise, dass die Rotation linear ist, also $\vec{\nabla} \times \left(\lambda \vec{A} + \vec{B} \right) = \lambda \vec{\nabla} \times \vec{A} + \vec{\nabla} \times \vec{B}$.
 - (b) Zeige $\vec{\nabla} \times \vec{\nabla} f = 0$ und $\left\langle \vec{\nabla}, \vec{\nabla} \times \vec{A} \right\rangle = 0$ (rot grad f = 0 und div rot $\vec{A} = 0$).
 - (c) Beweise die Produktregel $\vec{\nabla} \times (f\vec{A}) = \vec{\nabla} f \times \vec{A} + f \cdot \vec{\nabla} \times \vec{A}$.
 - (d) Zeige $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} \langle \vec{\nabla}, \vec{A} \rangle \Delta \vec{A}$.
- 3. Aufgabe: (Divergenz)
 - (a) Zeige, dass die Divergenz linear ist, also $\langle \vec{\nabla}, \lambda \vec{A} + \vec{B} \rangle = \lambda \langle \vec{\nabla}, \vec{A} \rangle + \langle \vec{\nabla}, \vec{B} \rangle$.
 - (b) Beweise die Produktregel $\langle \vec{\nabla}, f \vec{A} \rangle = \langle \vec{\nabla} f, \vec{A} \rangle + f \langle \vec{\nabla}, \vec{A} \rangle$.
 - (c) Beweise $\left\langle \vec{\nabla}, \vec{A} \times \vec{B} \right\rangle = \left\langle \vec{B}, \vec{\nabla} \times \vec{A} \right\rangle \left\langle \vec{A}, \vec{\nabla} \times \vec{B} \right\rangle$.
 - (d) Zeige $\langle \vec{\nabla}, \vec{\nabla} f \times \vec{\nabla} g \rangle = 0$
- 4. Aufgabe: (Laplace Operator)

Für den Laplace-Operator gilt $\Delta f = \langle \vec{\nabla}, \vec{\nabla} f \rangle$.

- (a) Zeige, dass der Laplace Operator linear ist, also $\Delta (\lambda f + \mu g) = \lambda \Delta f + \mu \Delta g$.
- (b) Beweise die Produktregel $\Delta (fg) = g \Delta f + 2 \langle \vec{\nabla} f, \vec{\nabla} g \rangle + f \Delta g$

 $^{^1}$ Hinweis: Es lässt sich übrigens auch eine Produktregel für $\vec{\nabla} imes \left(\vec{A} imes \vec{B} \right)$ berechnen.