Beispiel: Die Funktion $f(x,y) = xye^{-x^2}$ soll über die rechteckige Menge $M_{\square} = \{(x,y) \mid 0 \le x \le 2, \ 0 \le y \le 3\}$ integriert werden, gesucht ist also $\int_{M_{\square}} f \, dx \, dy$. Es ergibt sich:

$$\int_0^3 \int_0^2 xy e^{-x^2} dx \, dy = \int_0^3 \left[-\frac{1}{2} y e^{-x^2} \right]_0^2 \, dy = \int_0^3 \left(-\frac{1}{2} y e^{-4} + \frac{1}{2} y \right) \, dy = \left[-\frac{1}{4} y^2 e^{-4} + \frac{1}{4} y^2 \right]_0^3 = -\frac{9}{4} e^{-4} + \frac{9}{4} e^{-4} + \frac{1}{4} e^{-4} + \frac$$

1. Aufgabe:

- (a) Sei $f(x,y)=x^2y+y$. Berechne $\int_M f\,dx\,dy$ mit $M=\{(x,y)\mid -1\leq x\leq 2,\; 1\leq y\leq 3\}$.
- (b) Berechne $\int_W x^2 y^3 z^4 dx dy dz$ wobei $W = \{(x,y,z) \mid 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1\}$ ein Würfel ist.

2. Aufgabe: (Polarkoordinaten)

Sei $f(x,y) = 25 - x^2 - y^2$. f soll nun zunächst über den Einheitskreis $B_1 = \{(x \mid y) \mid x^2 + y^2 \leq 1\}$ integriert werden. Die Integration $\int_{M_{\odot}} f \, dx \, dy$ lässt sich durch Transformation in ein geeignetes Koordinatensystem, hier Polarkoordinaten, durchführen. Die Transformation ist $\vec{\psi}(r,\phi) = (r\cos\phi, r\sin\phi)^{\top}$.

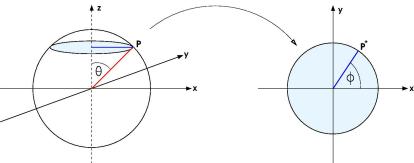
- (a) Zeige, dass $f(\vec{\psi}) = f(r\cos\phi, r\sin\phi) = 25 r^2$ ergibt.
- (b) Das Flächenelement $dx\,dy$ lässt sich mit Hilfe der Jakobimatrix $D\vec{\psi} = \left(\frac{\partial\vec{\psi}}{\partial r}, \frac{\partial\vec{\psi}}{\partial \phi}\right)$ transformieren. Bei der Transformation wird $dx\,dy$ zu $\left|\det\left(D\vec{\psi}\right)\right|dr\,d\phi$. Zeige, dass für Polarkoordinaten $\left|\det\left(D\vec{\psi}\right)\right|=r$.
- (c) Bei Integration über den Einheitskreis läuft die Radialkoordinate r von 0 bis 1 und die Winkelkoordinate ϕ von 0 bis 2π . Berechne für die oben angegebene Funktion f das Integral

$$\int_{B_1} f dx \, dy = \int_0^{2\pi} \int_0^1 f\left(\vec{\psi}\right) \left| \det\left(D\vec{\psi}\right) \right| dr \, d\phi.$$

- (d) Ermittle die Nullstellenmenge N_0 von f und berechne das Volumen, dass f mit der x, y-Ebene einschließt.
- (e) Sei f(x,y) = 1. Integriert man 1 über den Kreis mit Radius R, also $B_R = \{(x \mid y) \mid x^2 + y^2 \leq R^2\}$ so ergibt sich anschaulich ein Zylinder mit Höhe H = 1. Berechne das Volumen des Zylinders $\int_{B_R} 1 \, dx \, dy$ durch Transformation in Poolarkoodinaten. *Hinweis:* Wegen der Höhe Eins hat man damit auch die Größe der Grundfläche ausgerechnet.
- (f) Durch $p(x,y) = H a(x^2 + y^2)$ ist ein Paraboloid der Höhe H gegeben. Bestimme a so dass B_R die Nullstellenmenge von p ist und berechne das Volumen des Paraboloids.

3. Aufgabe: (Kugelkoordinaten)

Sei $P \in \mathbb{R}^3$ ein Punkt mit den Koordinaten P(x,y,z), dann gibt r den Abstand zum Koordinatenursprung und θ den Winkel zwischen der z-Achse und dem Vektor \overrightarrow{OP} an. Sei P^* die orthogonale Projektion des Punktes P auf die x,y-Ebene, d.h. $P^*(x,y,0)$, dann ist ϕ der Winkel zwischen der x-Achse und dem Vektor \overrightarrow{OP}^* .



Die Transformation ist gegeben durch $(x, y, z)^{\top} = \vec{\psi}(r, \phi, \theta) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)^{\top}$. Berechne¹ das Volumen einer Kugel mit Radius R durch Integration der Funktion f = 1 über $B_R = \{(x \mid y) \mid x^2 + y^2 + z^2 \leq R\}$.

4. Aufgabe: (Torus)

Durch $\vec{\psi}(r,\phi,\theta) = ([R \pm r\cos\theta]\cos\phi, [R \pm r\cos\theta]\sin\phi, r\sin\theta)^{\top}$ lässt sich ein Torus parametrisieren (+ oder – wählen). Beide Winkel laufen von 0 bis 2π , r von 0 bis zum Querschnittsradius. Berechne das Volumen.

¹Zeige zunächst $\left|\det\left(D\vec{\psi}\right)\right|=r^2\sin\theta$