Seien $\{x,y,z\}$ die Koordinaten des \mathbb{R}^3 , o bzw. \langle , \rangle das Skalarprodukt und \wedge das Dachprodukt mit den Eigenschaften, dass für alle Koordinaten $\sigma, \xi \in \{x,y,z\}$ gilt:

$$d\sigma \wedge d\xi = -d\xi \wedge d\sigma$$
, $d\xi \wedge d\xi = 0$, $d \wedge f d\xi = df \wedge d\xi$ (1)

Ferner sei

$$d\overrightarrow{r} := \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}, \qquad \overrightarrow{dA} := \begin{pmatrix} dy \wedge dz \\ dz \wedge dx \\ dx \wedge dy \end{pmatrix}, \qquad dV := dx \wedge dy \wedge dz$$
 (2)

und $\partial_{\xi} f = \frac{\partial f}{\partial \xi}$ sowie $\overrightarrow{\nabla} = (\partial_x, \, \partial_y, \, \partial_z)^{\top}$.

0-Form: Sei f = f(x, y, z) eine differenzierbare Abbildung $f : \mathbb{R}^3 \to \mathbb{R}$, dann ist eine 0-Form ω_0 gegeben durch:

$$\omega_0 = f \tag{3}$$

1-Form: Sei \overrightarrow{H} eine differenzierbare Abbildung $\overrightarrow{H}: \mathbb{R}^3 \to \mathbb{R}^3$ mit den Komponentenfunktionen $h_k = h_k(x, y, z)$, dann ist eine 1-Form ω_1 gegeben durch

$$\omega_1 = \overrightarrow{H} \circ d\overrightarrow{r} = h_1 dx + h_2 dy + h_3 dz \tag{4}$$

2-Form: Sei \overrightarrow{B} eine differenzierbare Abbildung $\overrightarrow{B}: \mathbb{R}^3 \to \mathbb{R}^3$ mit den Komponentenfunktionen $b_k = b_k(x, y, z)$, dann ist eine 2-Form ω_2 gegeben durch:

$$\omega_2 = \overrightarrow{B} \circ d\overrightarrow{A} = b_1 \, dy \wedge dz + b_2 \, dz \wedge dx + b_3 \, dx \wedge dy \tag{5}$$

3-Form: Sei p = p(x, y, z) eine differenzierbare Abbildung $p: \mathbb{R}^3 \to \mathbb{R}$, dann ist eine 3-Form ω_3 gegeben durch:

$$\omega_3 = p \, dV = p \, dx \wedge dy \wedge dz \tag{6}$$

Sei U eine offene Teilmenge einer k-dimensionalen orientierbaren Mannigfaltigkeit¹. Eine k-Form ω_k kann über eine solche k-dimensionale Menge U integriert werden. Beispielsweise lässt sich eine 2-Form über eine Kreisfläche oder über die Oberfläche einer Kugel integrieren.

1. Aufgabe:

- (a) Zeige, dass für eine 0-Form, siehe (3), gilt $d\omega_0 = \overrightarrow{\nabla} f \circ d\overrightarrow{r}$.
- (b) Eine Differentialform ω heißt geschlossen, wenn $d\omega = 0$ gilt. Entscheide jeweils begründet ob die Differentialform geschlossen ist:
 - i. Gegeben sei die 1-Form $\omega_1 = xe^y dx + \frac{1}{z} dy + x^2 dz$.
 - ii. Sei $\vec{g} = -\gamma \frac{M}{r^2} \cdot \frac{\vec{r}}{|\vec{r}|} = -\gamma \frac{M}{r^3} \cdot \vec{r}$ die Fallbeschleunigung im Feld einer Punktmasse und $\omega = \vec{g} \circ d\vec{r}$.
- (c) Beweise, dass aus den Eigenschaften des Dachproduktes (1) direkt $d \wedge d\omega_0 = 0$ folgt.
- (d) Gibt es eine 0-Form ω_0 , mit der sich die Differentialform aus Aufgabenteil (1(b)ii) als $d\omega_0 = \vec{g} \circ d\vec{r}$ schreiben lässt? Hinweis: Gravitationspotential
- 2. Aufgabe: Beweise mit (1) und (2) die folgenden Aussagen:
 - (a) Das Differential einer 1–Form $\omega_1 = \overrightarrow{H} \circ d\overrightarrow{r}$ ergibt die 2–Form

$$d\omega_1 = \left(\overrightarrow{\nabla} \times \overrightarrow{H}\right) \circ d\overrightarrow{A} = rot\left(\overrightarrow{H}\right) \circ d\overrightarrow{A}. \tag{7}$$

(b) Das Differential einer 2–Form $\omega_2 = \overrightarrow{B} \circ d\overrightarrow{A}$ ergibt die 3–Form

$$d\omega_2 = \left(\overrightarrow{\nabla} \circ \overrightarrow{B}\right) dV = div\left(\overrightarrow{B}\right) dV. \tag{8}$$

 $^{^{1}\,}https://de.wikipedia.org/wiki/Mannigfaltigkeit$

Um bei den Differentialformen im \mathbb{R}^3 Koordinatentransformationen anzuwenden, genügt es zu untersuchen wie sich die Terme \overrightarrow{dr} , \overrightarrow{dA} und dV siehe (2) transformieren. Beginnen wir mit einer 1-Form und dem Element $d\overrightarrow{r}$. Da 1-Formen über Kurven integriert werden können, betrachten wir eine Kurve $\overrightarrow{\rho}(t)$ mit den Kompnenten $\rho_i(t)$ wobei $i \in \{1,2,3\}$. Das Anwenden einer Koordinatentransformation auf Differentialformen entspricht dem "Zurückziehen" von Differentialformen, welches oft mit einem * gekennzeichnet wird. Hier folgt

$$\rho^* d\overrightarrow{r} = d\overrightarrow{\rho}(t) = (d\rho_1, d\rho_2, d\rho_3)^{\top} = \left(\frac{d\rho_1}{dt} dt, \frac{d\rho_2}{dt} dt, \frac{d\rho_3}{dt} dt\right)^{\top} = \frac{d\overrightarrow{\rho}}{dt} dt$$

und damit für eine 1-Form (4):

$$\rho^* \omega_1 = \rho^* \left[\overrightarrow{H} \circ d\overrightarrow{r} \right] = \overrightarrow{H} \left(\overrightarrow{\rho} \left(t \right) \right) \circ \frac{d\overrightarrow{\rho}}{dt} dt \tag{9}$$

1. Aufgabe:

Eine Helix (Schraubenlinie) mit Radius R und Ganghöhe H lässt sich parametrisieren durch

$$\overrightarrow{\rho}(t) = (R\cos(2\pi t), R\sin(2\pi t), Ht)^{\top}$$
(10)

- (a) Berechne den Startpunkt A auf der Helix für t=0 und den Punkt B nachdem n Windungen durchlaufen wurden.
- (b) Betrachten wir das Vektorfeld $\vec{V}(\vec{r}) = \vec{r} = (x, y, z)^{\top}$.
 - i. Berechne $\rho^* \left[\overrightarrow{V} \circ d\overrightarrow{r} \right]$ mit (10).
 - ii. Das Vektorfeld \vec{V} soll über 5 Windungen der Helix (10) integriert werden. Berechne den Wert des Integrals.
- (c) Berechne die Kurvenlänge $\int ds$ von 5 Windungen der Helix. Hinweis: Transformation (10) auf $ds = \sqrt{dx^2 + dy^2 + dz^2}$ anwenden. Es ist $ds = |d\vec{r}|$.
- (d) Sei $\vec{F} = -\frac{\gamma Mm}{r^3} \vec{r}$. Das Vektorfeld \vec{F} soll über n Windungen der Helix (10) integriert werden. Berechne den Term $\rho^* \left[\overrightarrow{F} \circ d \overrightarrow{r} \right]$ und den Wert W_H des Integrals.

2. Aufgabe:

Wir betrachten nun die gerade Verbindungslinie zwischen den Punkten A und B, siehe Aufgabe 1a. Die Gerade durch A und B lässt sich parametriesieren durch:

$$\overrightarrow{l}_{AB}\left(t\right) \; = \; \overrightarrow{0A} + t\; \overrightarrow{AB} \; = \; \left(\; R + t\left[R\cos\left(2\pi n\right) - R\right], \; Rt\sin\left(2\pi n\right), \; Hnt \;\right)^{\top}$$

- (a) Zeige, dass \vec{l}_{AB} für t=0 den Punkt A und für t=1 den Punkt B erreicht.
- (b) Sei $\alpha = R^2 \left[\cos\left(2\pi n\right) 1\right]$ und $\beta = 2R^2 \left[1 \cos\left(2\pi n\right)\right] + H^2 n^2$. Zeige, dass $l_{AB}^* \left[\overrightarrow{r} \circ d\overrightarrow{r}\right] = (\alpha + t\beta) dt$.
- (c) Zeige, dass $l_{AB}^* \left[r^2 \right] = R^2 + 2t\alpha + t^2\beta$ und berechne $l_{AB}^* \left[\overrightarrow{F} \circ d\overrightarrow{r} \right]$.
- (d) $\vec{F} = -\frac{\gamma Mm}{r^3}\vec{r}$ soll über die Strecke \overline{AB} integriert werden, berechne das Integral W_{AB} .

3. Aufgabe:

Sei $\vec{\rho}(t)$ jetzt eine beliebige stetig differenzierbare Kurve mit $\vec{\rho}(t_0) = \overrightarrow{0A}$ und $\vec{\rho}(t_1) = \overrightarrow{0B}$ und wieder $\vec{F} = -\frac{\gamma Mm}{r^3}\vec{r}$.

- (a) Berechne $\rho^*\left[\overrightarrow{F}\circ d\overrightarrow{r}\right]$ und das Integral W des Vektorfelds \overrightarrow{F} über die Kurve $\overrightarrow{\rho}$. Gib eine physikalische Interpretation für W_H an.
- (b) Die Masse M befindet sich im Zentrum des Koordinatensystems und erzeugt das Gravitationsfeld \vec{F} . Bestimme den Abstand der beiden Punkte A und B, siehe Aufgabenteil 1a, zum Gravitationszentrum M im Ursprung. Ermittle jeweils die potentielle Energie in diesen beiden Punkten und die Energie, welche nötig ist um die Masse m von A nach B zu transportieren.
- (c) Löse alle Aufgaben für $\vec{F_{\Lambda}} = \left(-\frac{\gamma Mm}{r^2} + \frac{1}{3}\Lambda mr\right)\frac{\vec{r}}{r}$ und berechne $d \wedge \left[\overrightarrow{F} \circ d\overrightarrow{r}\right]$ sowie $d \wedge \left[\overrightarrow{F}_{\Lambda} \circ d\overrightarrow{r}\right]$.

Die Transformation des Elementes $d\overrightarrow{A} = (dy \wedge dz, dz \wedge dx, dx \wedge dy)^{\top}$ wird beim Zurückziehen einer 2-Form, siehe (5), also z.B. $\omega_2 = \overrightarrow{B} \circ d\overrightarrow{A}$, benötigt. Da 2-Formen über zweidimensionale Flächen integriert werden können, betrachten wir dazu eine parametrisierte Fläche der Form²

$$\overrightarrow{\varphi}\left(s,t\right) = \left(\,\varphi_{1}\left(s,t\right),\,\varphi_{2}\left(s,t\right),\,\varphi_{3}\left(s,t\right)\,\right)^{\top}.$$

- 1. Aufgabe: (Zurückziehen einer 2-Form)
 - (a) Sei wieder $\omega_2 = \overrightarrow{B} \circ d\overrightarrow{A}$, siehe (5). Beweise, dass $\varphi^*\omega_2 = \overrightarrow{B} (\overrightarrow{\varphi} (s,t)) \circ \left(\frac{\partial \overrightarrow{\varphi}}{\partial s} \times \frac{\partial \overrightarrow{\varphi}}{\partial t} \right) ds \wedge dt$
 - (b) Der magnetische Fluss Φ durch eine Fläche A ist das Flächenintegral der magnetischen Flussdichte \vec{B} über die Querschnittfläche A:

$$\Phi = \iint_{A} \overrightarrow{B} \circ d\overrightarrow{A} \tag{11}$$

Sei $\vec{B} = (0 \mid 0 \mid B)$ ein homogenes konstantes Magnetfeld in z-Richtung. Berechne den magnetischen Fluss durch die Kreisfläche $K_2 = \left\{ (x,y,0) \mid x^2 + y^2 \leq R^2 \right\}$, welche durch $\overrightarrow{\varphi}(s,t) = (s\cos(t), s\sin(t), 0)^{\top}$ mit $0 \leq s \leq R$ und $0 \leq t \leq 2\pi$ parametrisiert werden kann.

- (c) Berechne den Inhalt der Kreisfläche durch $\int_{K_2} \left| d\overrightarrow{A} \right|$.
- (d) Berechne die Oberfläche der Kugel durch $\int_{\partial K_3} \left| d\overrightarrow{A} \right|$. Hierbei ist $\partial K_3 = \{(x,y,z) \mid x^2 + y^2 + z^2 = R^2\}$ der Rand der Kugel $K_3 = \{(x,y,z) \mid x^2 + y^2 + z^2 \leq R^2\}$. Hinweis: Kugelkoordinaten benutzen, dabei ist der Radius R konstant!
- (e) Sei T_3 der Torus im \mathbb{R}^3 . Berechne die Torusoberfläche durch $\int_{\partial T_3} \left| d\overrightarrow{A} \right|$.
- (f) Sei \vec{B} die magnetische Flussdichte eines magnetischen Dipols (in größerer Entfernung r zum Dipol), also

$$\overrightarrow{B} = \frac{\mu_0}{4\pi} \cdot \frac{3\overrightarrow{r}\langle \overrightarrow{m}, \overrightarrow{r}\rangle - \overrightarrow{m}r^2}{r^5}.$$
 (12)

- i. Zeige, dass für $\vec{\varphi}\left(\phi,\theta\right)=R\left(\sin\theta\cos\phi,\,\sin\theta\sin\phi,\,\cos\theta\right)^{\top}$ gilt $\varphi^{*}\left[\vec{r}\circ d\overrightarrow{A}\right]=R^{3}\sin\theta\,d\theta\wedge d\phi$.
- ii. Beweise, dass außerdem die Gleichung $\varphi^* \left[\vec{r} \right] R \sin \theta \, d\theta \wedge d\phi = \varphi^* \left[d\overrightarrow{A} \right]$ erfüllt ist.
- iii. Berechne das Integral der magnetischen Flussdichte \vec{B} , siehe (12), über die Kugeloberfläche ∂K_3 .

2. Aufgabe:

Der elektrische Fluss Φ im Vakuum durch die Fläche A wird durch die Gleichung

$$\Phi = \iint_{A} \overrightarrow{E} \circ d\overrightarrow{A} \tag{13}$$

beschrieben. Die Feldstärke einer Punktladung 3 der Ladung Q im Koordinatenursprung ist:

$$\overrightarrow{E} = \frac{Q}{4\pi\varepsilon_0 r^3} \vec{r}$$

- (a) Berechne den elektrischen Fluss durch die Kugeloberfläche ∂K_3 .
- (b) Zeige mit Teil 2a, dass $\Phi = 4\pi r^2 E$ wobei $E = \left| \overrightarrow{E} \right|$.
- (c) Betrachten wir eine Hohlkugel, deren Oberfläche mit der Ladung $Q_{außen}$ versehen wird. Begründe, dass das Innere der Hohlkugel feldfrei ist (Farradayscher Käfig).
- (d) Sei $\omega = \overrightarrow{E} \circ d\overrightarrow{A}$, berechne $d\omega$.

$$\varphi^* \left[dx_k \wedge dx_i \right] = (\partial_s \varphi_k \, ds + \partial_t \varphi_k \, dt) \wedge (\partial_s \varphi_i \, ds + \partial_t \varphi_i \, dt) = (\partial_s \varphi_k \cdot \partial_t \varphi_i - \partial_t \varphi_k \cdot \partial_s \varphi_i) \, ds \wedge dt$$

²Offensichtlich gilt für das totale Differential der Komponenten $d\varphi_k = \partial_s \varphi_k \, ds + \partial_t \varphi_k \, dt$ und damit

³Die gleiche Feldstärke erhält man außerhalb einer geladenen Kugel.

Eine 3-Form kann über dreidimensionale Mannigfaltigkeiten integriert werden. Sei

$$\overrightarrow{\psi}(r,s,t) = (\psi_1(r,s,t), \psi_2(r,s,t), \psi_3(r,s,t))^{\top}$$
(14)

die Parametrisierung einer dreidimensionale Mannigfaltigkeit. Zurückziehen einer 3-Form $\omega_3 = p \, dV$ mit $p: \mathbb{R}^3 \to \mathbb{R}$ erfolgt durch $\psi^*\omega_3 = p \left(\vec{\psi}\right) \psi^* \left[dx \wedge dy \wedge dz\right]$. Die Transformation des Volumenelementes $dV = dx \wedge dy \wedge dz$ ist hier entscheidend.

1. Aufgabe:

- (a) Berechne $\psi^* [dx \wedge dy \wedge dz]$ bei Kugelkoordinaten $\vec{\psi}(r, \phi, \theta) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)^{\top}$ und berechne das Kugelvolumen.
- (b) Löse Aufgabe (1a) für Zylinder- und Toruskoordinaten.
- (c) Sei $p(x, y, z) = (x^2 + y^2 + z^2)^{-1}$. Integriere die 3-Form $\omega_3 = p \, dV$ über die Kugel mit Radius R.
- (d) Beweise, dass sich allgemein für die Parametrisierung einer dreidimensionalen Mannigfaltigkeit (14) die Transformationsregel $\psi^* [dx \wedge dy \wedge dz] = det \left(D \overrightarrow{\psi} \right) dr \wedge ds \wedge dt$ ergibt und damit

$$\psi^*\omega_3 = p\left(\overrightarrow{\psi}\left(r,s,t\right)\right)\,\det\left(D\overrightarrow{\psi}\right)\,dr\wedge ds\wedge dt.$$

2. Aufgabe:

In zwei Dimensionen, also im \mathbb{R}^2 , gibt es 0-,1- und 2-Formen. Die Nullform ist wieder $\omega_0=f$ wobei f eine differenzierbare Abbildung $f:\mathbb{R}^2\to\mathbb{R}$ ist. Mit dem Differential $d\omega_0$ erhält man eine 1-Form.

- (a) Berechne mit den Regeln des Dachproduktes die Struktur von 1- und 2-Formen im \mathbb{R}^2 .
- (b) Eine m-Form kann über eine m-dimensionale Mannigfaltigkeit integriert werden. Berechne die Transformation in Polarkoordinaten
 - i. für eine 1-Form, welche über den Kreisrand $\partial K_2 = \{(x,y) \mid x^2 + y^2 = R^2\}$ integriert werden soll.
 - ii. für eine 2-Form, welche über den Kreis $K_2 = \{(x,y) \mid x^2 + y^2 \le R^2\}$ integriert werden soll.
- (c) Berechne allgemein alle Transformationsregeln für die Integration von m-Formen im \mathbb{R}^2

3. Aufgabe:

Betrachten wir nun den eindimensionalen Raum \mathbb{R} . Die Nullform ist wie immer $\omega_0 = f$ wobei f eine differenzierbare Abbildung $f: \mathbb{R} \to \mathbb{R}$ ist.

- (a) Gib an welche m-Formen es in \mathbb{R} gibt.
- (b) Sei $\varphi : \mathbb{R} \to \mathbb{R}$ eine stetig differenzierbare Abbildung. Stelle die Transformationsregel für eine 1-Form in \mathbb{R} auf, also für $\varphi^*\omega_1$.

4. Aufgabe:

Seien $\{x_1, x_2, x_3, x_4\}$ die karthesischen Koordinaten des \mathbb{R}^4 . Das Volumenelement im \mathbb{R}^4 ist gegeben durch $dV_4 = dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$. Die Abbildung

$$\overrightarrow{\psi}_{4}(r,\theta_{1},\theta_{2},\phi) = \begin{pmatrix} r \sin(\theta_{1})\sin(\theta_{2})\cos(\phi) \\ r \sin(\theta_{1})\sin(\theta_{2})\sin(\phi) \\ r \sin(\theta_{1})\cos(\theta_{2}) \\ r \cos(\theta_{1}) \end{pmatrix}$$
(15)

ist eine Parametrisierung für sphärische Koordinaten im \mathbb{R}^4 (Kugelkoordinaten).

- (a) Beweise $\psi_4^* dV_4 = r^3 \sin^2(\theta_1) \sin(\theta_2) dr \wedge d\theta_1 \wedge d\theta_2 \wedge d\phi$ mit dem Dachprodukt.
- (b) Berechne das Volumen von $K_4 = \{\vec{x} \in \mathbb{R}^4 \mid |\vec{x}| \leq R\}$. Bei (15) ist $\theta_1, \theta_2 \in [0, \pi]$ und $\phi \in [0, 2\pi]$.